The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
نویسنده
چکیده
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit. Keywords—Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملAcoustic Emotion Recognition Using Linear and Nonlinear Cepstral Coefficients
Recognizing human emotions through vocal channel has gained increased attention recently. In this paper, we study how used features, and classifiers impact recognition accuracy of emotions present in speech. Four emotional states are considered for classification of emotions from speech in this work. For this aim, features are extracted from audio characteristics of emotional speech using Linea...
متن کاملPerceptual Significance of Cepstral Distortion Measures in Digital Speech Processing
Currently, one of the most widely used distance measures in speech and speaker recognition is the Euclidean distance between mel frequency cepstral coefficients (MFCC). MFCCs are based on filter bank algorithm whose filters are equally spaced on a perceptually motivated mel frequency scale. The value of mel cepstral vector, as well as the properties of the corresponding cepstral distance, are d...
متن کاملImproving the noise-robustness of mel-frequency cepstral coefficients for speech processing
In this paper we study the noise-robustness of mel-frequency cepstral coefficients (MFCCs) and explore ways to improve their performance in noisy conditions. Improvements based on a more accurate model of the early auditory system are suggested to make the MFCC features more robust to noise while preserving their class discrimination ability. Speech versus non-speech classification and speech r...
متن کامل